Современный учебно-тренажерный комплекс для подготовки слесарей по КИПиА

ЗАХАРЧЕНКО Лариса Александровна, преподаватель Томского промышленно-гуманитарного колледжа, Томск

САФОНЧИК Евгений Иванович, заведующий лабораторией Томского промышленно-гуманитарного колледжа, Томск

т оперативности модернизации лабораторий технических средств автоматизации существенно зависит качество образования, компетентность и востребованность эксплуатационного персонала и в итоге эффективность использования новых функциональных возможностей автоматических систем управления технологическими процессами (далее — АСУ ТП).

Важность комплексного изучения АСУ ТП

Особое значение при подготовке высококвалифицированных рабочих по профессии «Слесарь КИПиА» имеет комплексное изучение АСУ ТП, которое подразумевает не только последовательное изучение состава оборудования верхнего, среднего и нижнего уровней автоматизации, но и принципа их взаимодействия при передаче сигнала. Поэтому необходимо рассматривать не просто устройство датчика или измерительного преобразователя, а его роль в функционировании системы автоматизации в целом. Квалифицированному специалисту необходимо уметь проследить прохождение сигнала и при необходимости выявить причину его искажения.

Программы производственного обучения подготовки и повышения квалификации слесаря по КИПиА, разработанные в соответствии с РД-03.100.30-КТН-035-13, не предусматривают составления принципиальных электрических схем каналов измерения, управления и регулирования. В них нет практических работ по поиску неисправностей, наладке готовых схем шкафов автоматизации. А это те работы, которыми современный специалист занимается на производстве, что нашло отражение в заданиях

Первоочередной задачей при подготовке высококвалифицированных рабочих по эксплуатации средств автоматизации является наличие лабораторного современного оборудования. Смена поколений технических средств автоматизации на производстве должна сопровождаться адекватным развитием соответствующей лабораторной базы в профессиональных образовательных организациях.

> на чемпионатах Worldskills по компетенциям «Промышленная автоматизация» и «Мехатроника» [3]. Низкие результаты, которые показывают конкурсанты из России, подтверждают тот факт, что методика подготовки и повышения квалификации специалистов даже при условии современного оснащения учебных лабораторий не соответствует производственным задачам.

Работы с применением контроллерной техники

Решить данную проблему предлагается посредством включения в производственное обучение работ с элементами контроллерной техники [2]. Контроллер — это основа среднего уровня автоматизации. Знание особенностей его принципа действия и умение работы с ним необходимы для понимания всего производственного процесса. Слесарь КИПиА должен знать разницу и особенности построения каналов ввода-вывода, а также основы программирования и конфигурирования программируемых логических контроллеров.

Для изучения широко распространенных контроллеров, таких как Simens, Iton выпускаются стандартные тренажеры, предназначенные для индивидуального обучения и проведения ограниченного набора лабораторных

Кроме этого разработаны компьютерные тренажерные комплексы, помогающие персоналу отработать практические навыки управления технологическим объектом в условиях, максимально приближенных к реальным. Существенными недостатками таких тренажеров являются их высокая стоимость и направленность на обучение операторов, то есть людей, обеспечивающих правильное ведение технологического процесса.

Для подготовки ремонтного и оперативноремонтного персонала, несмотря на высокую в нем потребность, предложение тренажерного

Аннотация

В статье показывается необходимость разработки и применения учебно-тренажерных комплексов для подготовки и повышения квалификации специалистов в области промышленной автоматизации

Ключевые слова:

учебно-тренажерный комплекс, программы производственного обучения, контроллерная техника

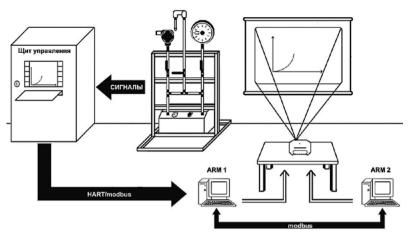
оборудования гораздо меньше. Сложные и опасные производства, такие как атомные и нефтеперекачивающие станции, комплектуются имитаторами объектов. Эти имитаторы позволяют отработать действия ремонтного персонала до автоматизма, но сами предприятия не имеют возможностей для систематического обучения.

Поэтому для подготовки слесарей по КИПиА и проведения курсов повышения квалификации появилась необходимость в создании учебно-тренажерного комплекса (далее — УТК), структурная схема которого представлена на рисунке.

Устройство УТК

Основная идея УТК — объединение контроллера, объекта управления, датчиков и исполнительных механизмов с автоматизированными рабочими местами оператора (далее АРМ), инженера КИП и преподавателя.

Оборудование легко воспроизводимо, обладает высокой функциональностью, имеет относительно невысокую стоимость, которую можно варьировать в зависимости от используемых комплектующих. Конструкция эргономична и занимает небольшую площадь, легка в обслуживании, пригодна для проведения монтажных работ. Оборудование совместимо с новейшим программным и техническим обеспечением и имеет возможность дальнейшей модернизации. Для облегчения понимания физической сущности процесса в качестве объекта управления используется компрессор.


АРМ преподавателя включает интерактивную доску, что делает наглядным выполнение практических работ и повышает эффективность усвоения учебного материала.

Аппаратная часть тренажера представляет собой щит управления с комплектом контроллера МОДИКОН, стойки с приборами нижнего уровня, автоматизированного рабочего места и компьютера преподавателя.

Существующая конфигурация позволяет подключить к контроллеру 32 дискретных входа, 16 дискретных выходов, 16 аналоговых входов и 8 резистивных. Связь входов и выходов с контроллером осуществляется через модули гальванического разделения и искробезопасности, что полностью соответствует требованиям безопасности.

Контроллер связан с компьютером, в котором установлены программные пакеты Concept и iFix. Первый позволяет конфигурировать, программировать и отлаживать контроллер, второй — организовать верхний уровень автоматизации.

В типовом варианте обучающиеся программируют контроллер как позиционный регулятор давления на выходе компрессора с защитами компрессора по вибрации, температуре и превышению давления; осуществляют монтаж и наладку в соответствии с типовыми схемными решениями.

Состав учебно-тренажерного комплекса

Таким образом, стойка нижнего уровня, щит управления и компьютер представляют собой законченную систему SCADA. Специализированное программное обеспечение на АРМ позволяет настраивать преобразователи давления по протоколу HART и проводить проверку систем и оборудования, работающего по протоколу MODBUS.

Следует отметить, что возможности УТК зависят от имеющегося набора модулей. При проведении занятий по изучению промышленных сетей в корзину устанавливались модули NOE 771 01 и CRA 932 00, что позволяло работать с контроллером в сетях Ethernet и RIO.

Установленные программы позволяют продемонстрировать особенности работы приборов в промышленных сетях, показать особенности в программировании контроллеров. Схемные решения и применяемое оборудование — типовые. Это дает возможность осуществить перенос полученных в ходе обучения навыков в реальное производство.

Особое значение предлагаемый комплекс приобретает для организации самостоятельной работы слушателей. Процесс выполнения работы отображается на интерактивной доске, что позволяет всей группе участвовать в обсуждении хода работ и получаемых результатов.

Практика использования учебно-тренажерного комплекса показала высокую эффективность при проведении занятий в различных формах для слушателей курсов подготовки и повышения квалификации по профессии «Слесарь по КИПиА» из числа рабочего персонала компании «Транснефть-Центральная Сибирь» и получила высокую оценку ведущих специалистов в области автоматизации.

Литература

- 1. Гиниятов И.Г., Сафончик Е.И., Хафизов Ф.Ш., Кудрявцев А.А.Имитационный тренажер для обучения технического персонала ОАО «АК «Транснефть» // Itech — интеллектуальные технологии. — 2008. — №9. — C. 70-71.
- 2. Захарченко Л.А., Сафончик Е.И., Чешуина Т.Г.Разработка образовательных программ по заказу работодателей // СПО. — 2009. — №12.
- 3. Worldskills Russia [Электронный ресурс] // URL: http://worldskills.ru/techcom/konkursdocs/.